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1 Barany’s Theorem and Fractional Helly’s Theorem

1.1 Proof of Barany’s theorem
We are now ready to prove Barany’s theorem.

Theorem 1.1 (Bardny). For every d, there exists a constant cg > 0 such that for every
X ={z1,...,2,} CR?, there exists z € R? such that z € Con(Zy), |I| = d + 1 for at least
O‘d(dil) subsets I.

Recall the two theorems we proved last time.

Theorem 1.2 (colorful Caratheodory). Let X1,..., X411 C RY be finite sets with 0 €
Conv(X;) for all i. Then there exist x1 € X1,22 € Xo,..., 2441 € Xg+1 Such that 0 €

Conv({z1,...,Td+1}).

Theorem 1.3 (weak Tverberg). Let r,d € N. For every n > (r — 1)(d + 1) + 1 and
T1,..., Ty € RY, there exist Iy, ..., I, C [n] with I;NI; = @ such that (;,_, Conv(Xy,) # &.

We will show these two imply Barany’s theorem.

Proof. Choose r = [n/(d+ 1)?]. By weak Tverberg, there exist X1, ..., X, C X such that
() Conv(X;) # @. Let z € (| Conv(X;) # @. By colorful Carathéodory, for all (d + 1)-
subsets of [r|, there exists a colorful simplex A which contains z. The number of such

#A= (d: 1> - (n/izd:fy)'

Use the fact that (Z) > (n;!k)!. Then

n
#A>ad<d+1>.

You can check that ag ~ 1/d°. O

simplices is




1.2 Fractional Helly’s theorem

Theorem 1.4 (fractional Helly). Fiz d,a > 0. Let Xy,...,X, C R? be convex sets such
that at least a(df_l) of (d+ 1)-element sets I C [n] have nonempty X;. Then there exists
J C [n] such that |J| > an/(d+ 1) and X; # @.

Lemma 1.1. Without loss of generality, one can assume all X; are convex polytopes.

Proof. Replace each X; with Y;, where Y; = Conv({ys : i € I}), where y; € ();c; X;. This
does not change any of the desired properties of the X;. O

Definition 1.1. A Morse function ¢ : R? — R is a linear function which is nonconstant
on edges of the Y.

Lemma 1.2. Let I C [n|, Y7 # @, and v = min,(Y7). Then there exists J C I such that
|J| < d and v = min,(Yy).

Proof. Apply the contrapositive of Helly’s theorem where one of the subsets is the half space
H_ = ¢~!((—00, ¢(v)) and the other subsets are Y; with i € I. Then (Y;NH_ = &, so the
contrapositive of Helly’s theorem gives J C I such that [J| < dand ();c,; Y;NH- = 2. [

We can now prove the theorem.

Proof. We have « : I — J. Consider I C [n| with |I| = d + 1. From lemma 2, there exists
some Jo C [n] with |Jp| = d such that Jy = y(I) for at least a(dil)/(Z) = aerf different
I. Let v = ming,(Y},). Thus, there exist at least ozZT_‘li i €I\ Jysuch that v € Y;. So v is
in at least |Jo| + a’;T_f =d+ O‘ZT_T{ > an/(d + 1) convex subsets Y;. O

Remark 1.1. The optimal bound is 1 — (1 — a)"/(¢*+1) instead of an/(d + 1).
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