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1 Bárány’s Theorem and Fractional Helly’s Theorem

1.1 Proof of Bárány’s theorem

We are now ready to prove Bárány’s theorem.

Theorem 1.1 (Bárány). For every d, there exists a constant αd > 0 such that for every
X = {x1, . . . , xn} ⊆ Rd, there exists z ∈ Rd such that z ∈ Con(ZI), |I| = d+ 1 for at least
αd

(
n

d+1

)
subsets I.

Recall the two theorems we proved last time.

Theorem 1.2 (colorful Carathèodory). Let X1, . . . , Xd+1 ⊆ Rd be finite sets with 0 ∈
Conv(Xi) for all i. Then there exist x1 ∈ X1, x2 ∈ X2, . . . , xd+1 ∈ Xd+1 such that 0 ∈
Conv({x1, . . . , xd+1}).

Theorem 1.3 (weak Tverberg). Let r, d ∈ N. For every n ≥ (r − 1)(d + 1)2 + 1 and
x1, . . . , xn ∈ Rd, there exist I1, . . . , Ir ⊆ [n] with Ii∩Ij = ∅ such that

⋂r
i=1 Conv(XIi) 6= ∅.

We will show these two imply Bárány’s theorem.

Proof. Choose r = bn/(d+ 1)2c. By weak Tverberg, there exist X1, . . . , Xr ⊆ X such that⋂
Conv(Xi) 6= ∅. Let z ∈

⋂
Conv(Xi) 6= ∅. By colorful Carathéodory, for all (d + 1)-

subsets of [r], there exists a colorful simplex ∆ which contains z. The number of such
simplices is

#∆ =

(
r

d+ 1

)
=

(
n/(d+ 1)2

d+ 1

)
.

Use the fact that
(
n
k

)
> (n−k)!

k! . Then

#∆ > αd

(
n

d+ 1

)
.

You can check that αd ≈ 1/dd.
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1.2 Fractional Helly’s theorem

Theorem 1.4 (fractional Helly). Fix d, α > 0. Let X1, . . . , Xn ⊆ Rd be convex sets such
that at least α

(
n

d+1

)
of (d + 1)-element sets I ⊆ [n] have nonempty XI . Then there exists

J ⊆ [n] such that |J | > αn/(d+ 1) and XJ 6= ∅.

Lemma 1.1. Without loss of generality, one can assume all Xi are convex polytopes.

Proof. Replace each Xi with Yi, where Yi = Conv({yI : i ∈ I}), where yI ∈
⋂

i∈I Xi. This
does not change any of the desired properties of the Xi.

Definition 1.1. A Morse function ϕ : Rd → R is a linear function which is nonconstant
on edges of the Yi.

Lemma 1.2. Let I ⊆ [n], YI 6= ∅, and v = minϕ(YI). Then there exists J ⊆ I such that
|J | ≤ d and v = minϕ(YJ).

Proof. Apply the contrapositive of Helly’s theorem where one of the subsets is the half space
H− = φ−1((−∞, φ(v)) and the other subsets are Yi with i ∈ I. Then

⋂
Yi∩H− = ∅, so the

contrapositive of Helly’s theorem gives J ⊆ I such that |J | ≤ d and
⋂

j∈J Yj ∩H− = ∅.

We can now prove the theorem.

Proof. We have γ : I 7→ J . Consider I ⊆ [n] with |I| = d+ 1. From lemma 2, there exists
some J0 ⊆ [n] with |J0| = d such that J0 = γ(I) for at least α

(
n

d+1

)
/
(
n
d

)
= αn−d

d+1 different

I. Let v = minϕ(YJ0). Thus, there exist at least αn−d
d+1 i ∈ I \ J0 such that v ∈ Yi. So v is

in at least |J0|+ αn−d
d+1 = d+ αn−d

d+1 > αn/(d+ 1) convex subsets Yi.

Remark 1.1. The optimal bound is 1− (1− α)1/(d+1) instead of αn/(d+ 1).
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